A Stable Niche Supports Long-Term Maintenance of Human Epidermal Stem Cells in Organotypic Cultures

Author:

Muffler Sonja1,Stark Hans-Jürgen1,Amoros Mara1,Falkowska-Hansen Berit1,Boehnke Karsten1,Bühring Hans-Jörg2,Marmé Alexander3,Bickenbach Jackie R.4,Boukamp Petra1

Affiliation:

1. Division of Genetics of Skin Carcinogenesis, German Cancer Research Center, Heidelberg, Germany

2. Department of Internal Medicine, University Clinic of Tübingen, Tübingen, Germany

3. Women's Clinic, University Clinic of Tübingen, Tübingen, Germany

4. Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA

Abstract

Abstract Stem cells in human interfollicular epidermis are still difficult to identify, mainly because of a lack of definitive markers and the inability to label human beings for label-retaining cells (LRCs). Here, we report that LRCs could be identified and localized in organotypic cultures (OTCs) made with human cells. Labeling cultures for 2 weeks with iododeoxyuridine (IdU) and then chasing for 6–10 weeks left <1% of basal cells retaining IdU label. Whole mounts demonstrated that LRCs were individually dispersed in the epidermal basal layer. Some LRCs, but not all, colocalized with cells expressing melanoma chondroitin sulfate proteoglycan, a putative stem cell marker. Although we found LRCs in both collagen- and scaffold-based OTCs, only the scaffold-OTCs supported long-term survival and regeneration. LRCs' short survival in collagen-OTCs was not due to loss of appropriate growth factors from fibroblasts. Instead, it was due to expression of metalloproteinases, especially matrix metalloproteinase (MMP)-2 and MMP-14, which caused collagen fragmentation, matrix degradation, and dislocation of specific basement membrane components bound to epidermal integrins. Blocking MMP activation not only abrogated MMP-dependent matrix degradation but also increased longevity of the epidermis and the LRCs in these cultures. Such findings indicate that the stem cell niche, the microenvironment surrounding and influencing the stem cell, is essential for stem cell survival and function, including long-term tissue regeneration. Disclosure of potential conflicts of interest is found at the end of this article.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Developmental Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3