Provisional Matrix Formation at Implant Surfaces—The Bridging Role of Calcium Ions

Author:

Anitua Eduardo,Tejero RicardoORCID

Abstract

The success of dental implants lies in their strong and lasting integration into the patient’s receiving bone. The first biological interactions at the implant surface determine the subsequent evolution of the integration process. In this study we set our objective to analyze the mechanistic interaction of the early regenerative matrix at implant surfaces modified with calcium ions (Ca) as compared to standard implant surfaces (NoCa). We put the surfaces in a Quartz Crystal Microbalance with Dissipation (QCM-D) to monitor the frequency shift (f) and the viscoelastic properties of the adsorbed biofilms and used Scanning Electron Microscopy (SEM) to visualize the resulting interfaces. Upon the addition of human blood plasma, Ca surfaces formed an adsorbed three-dimensional film attached to the surface (∆f = −40 Hz), while with NoCa, the biofilm formed but was not attached to the surface (∆f = 0 Hz). After 20 min in blood, two representative commercial implants with Ca and NoCa surfaces showed also distinct interfaces: Ca implants formed a visible clot attached to the implant which was composed mainly of platelets (Surface Coverage: 40 ± 20%) and some red blood cells (SC: 9 ± 3%) entrapped within a fibrin network (SC: 93 ± 5%). The NoCa implants were largely populated by red blood cells (SC: 67 ± 12%) with scarce fibrin remnants (SC: 3 ± 2%), and the implants showed no clot on their surfaces macroscopically. The pre-clinical and clinical results discussed in this work encourage the modification of titanium implant surfaces with calcium ions to improve the bone regenerative process. Taken together, these results add more information about the roles of Ca ions in bridging the formation of the provisional matrix at implant surfaces and their effects on implant osseointegration.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3