A Multi-Aperture Technique for Longitudinal Miniaturization of UWB 3 dB Dual-Layer SIW Coupler

Author:

Bilal Ahmad1ORCID,Hadee Abdul1,Shah Yash H.1,Bhattacharjee Sohom1ORCID,Cho Choon Sik2ORCID

Affiliation:

1. Department of Smart Air Mobility, Korea Aerospace University, Goyang 10540, Gyeonggi-do, Republic of Korea

2. Department of Electrical and Electronic Engineering, Korea Aerospace University, Goyang 10540, Gyeonggi-do, Republic of Korea

Abstract

Microwave couplers are used in large numbers in beamforming networks, and their miniaturization can lead to a significant size reduction in the overall phased array. While the miniaturization of 3 dB couplers in the transverse direction (width) has been given considerable attention in the literature, there is minimal to no information on reducing coupler length. This is because of the trade-off between aperture length, bandwidth and coupling strength. The Bethe–Hole theory requires adding multiple apertures in the longitudinal direction for wide bandwidth, thus increasing the device length. Another factor is the aperture size, which determines the coupling strength and puts additional strain on the compactness of a 3 dB coupler. Contrariwise, this paper proposes to merge two weak (and hence compact) coupling mechanisms to design a wideband 3 dB coupler. This is achieved by using a longitudinal rectangular slot and three cross-slots in the transverse direction. Because of weak coupling, the slot sizes are smaller than a conventional 3 dB coupler, hence yielding a device whose length is less than one guided wavelength (λg) without compromising the bandwidth. The presented coupler is 0.63 λg in length, which is smaller than the state-of-the-art while maintaining a fractional bandwidth of 37% that is comparable to half-mode substrate integrated waveguide (HMSIW) couplers.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3