New Insights on the Information Content of the Normalized Difference Vegetation Index Sentinel-2 Time Series for Assessing Vegetation Dynamics

Author:

Sáenz César123ORCID,Cicuéndez Víctor14ORCID,García Gabriel5,Madruga Diego1ORCID,Recuero Laura36,Bermejo-Saiz Alfonso1ORCID,Litago Javier6,de la Calle Ignacio2ORCID,Palacios-Orueta Alicia13

Affiliation:

1. Departamento de Ingeniería Agroforestal, ETSIAAB, Universidad Politécnica de Madrid, Av. Puerta de Hierro, nº 2—4, Ciudad Universitaria, 28040 Madrid, Spain

2. Quasar Science Resources, S.L., Camino de las Ceudas 2, Las Rozas de Madrid, 28232 Madrid, Spain

3. Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid, C/Senda del Rey 13, 28040 Madrid, Spain

4. Departamento de Física de la Tierra y Astrofísica, Facultad de Ciencias Físicas, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain

5. Department of Computer Architecture and Automation, Complutense University of Madrid, 28040 Madrid, Spain

6. Departamento de Economía Agraria, Estadística y Gestión de Empresas, ETSIAAB, Universidad Politécnica de Madrid (UPM), Av. Puerta de Hierro, nº 2—4, Ciudad Universitaria, 28040 Madrid, Spain

Abstract

The Sentinel-2 NDVI time series information content from 2017 to 2023 at a 10 m spatial resolution was evaluated based on the NDVI temporal dependency in five scenarios in central Spain. First, time series were interpolated and then filtered using the Savitzky–Golay, Fast Fourier Transform, Whittaker, and Maximum Value filters. Temporal dependency was assessed using the Q-Ljung-Box and Fisher’s Kappa tests, and similarity between raw and filtered time series was assessed using Correlation Coefficient and Root Mean Square Error. An Interpolating Efficiency Indicator (IEI) was proposed to summarize the number and temporal distribution of low-quality observations. Type of climate, atmospheric disturbances, land cover dynamics, and management were the main sources of variability in five scenarios: (1) rainfed wheat and barley presented high short-term variability due to clouds (lower IEI in winter and spring) during the growing cycle and high interannual variability due to precipitation; (2) maize showed stable summer cycles (high IEI) and low interannual variability due to irrigation; (3) irrigated alfalfa was cut five to six times during summer, resulting in specific intra-annual variability; (4) beech forest showed a strong and stable summer cycle, despite the short-term variability due to clouds (low IEI); and (5) evergreen pine forest had a highly variable growing cycle due to fast responses to temperature and precipitation through the year and medium IEI values. Interpolation after removing non-valid observations resulted in an increase in temporal dependency (Q-test), particularly a short term in areas with low IEI values. The information improvement made it possible to identify hidden periodicities and trends using the Fisher’s Kappa test. The SG filter showed high similarity values and weak influence on dynamics, while the MVF showed an overestimation of the NDVI values.

Funder

Community of Madrid and Quasar Science Resources, S.L.

Ministerio de Ciencia e Innovación of Spain

Spanish Ministerio de Ciencia e Innovación

Recovery and Resilience Package—NextGenerationEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3