Multi-Temporal Sentinel-2 Data in Classification of Mountain Vegetation

Author:

Wakulińska Martyna,Marcinkowska-Ochtyra AdrianaORCID

Abstract

The electromagnetic spectrum registered via satellite remote sensing methods became a popular data source that can enrich traditional methods of vegetation monitoring. The European Space Agency Sentinel-2 mission, thanks to its spatial (10–20 m) and spectral resolution (12 spectral bands registered in visible-, near-, and mid-infrared spectrum) and primarily its short revisit time (5 days), helps to provide reliable and accurate material for the identification of mountain vegetation. Using the support vector machines (SVM) algorithm and reference data (botanical map of non-forest vegetation, field survey data, and high spatial resolution images) it was possible to classify eight vegetation types of Giant Mountains: bogs and fens, deciduous shrub vegetation, forests, grasslands, heathlands, subalpine tall forbs, subalpine dwarf pine scrubs, and rock and scree vegetation. Additional variables such as principal component analysis (PCA) bands and selected vegetation indices were included in the best classified dataset. The results of the iterative classification, repeated 100 times, were assessed as approximately 80% median overall accuracy (OA) based on multi-temporal datasets composed of images acquired through the vegetation growing season (from late spring to early autumn 2018), better than using a single-date scene (70%–72% OA). Additional variables did not significantly improve the results, showing the importance of spectral and temporal information themselves. Our study confirms the possibility of fully available data for the identification of mountain vegetation for management purposes and protection within national parks.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3