Assessing the Wet Deposition Mechanism of Benzo(a)pyrene in the Atmosphere by MF-DCCA

Author:

Liu Chunqiong,Shi Kai,Liang Jian,Huang Hongliang

Abstract

Based on the 19 year observation from 1998 to 2016 at the Tsuan Wan and Central/Western District monitoring stations in Hong Kong, the aim of this paper was to assess the wet deposition pathway of Benzo(a)pyrene (BaP) on a large time-scale. In order to achieve this goal, multi-fractal detrended cross-correlation analysis (MF-DCCA) was used to characterize the long-term cross-correlations behaviors and multi-fractal temporal scaling properties between BaP (or PM2.5) and precipitation. The results showed that the relationships between BaP and precipitation (or PM2.5) displayed long-term cross-correlation at the time-scale ranging from one month to one year; no cross-correlation between each other was observed in longer temporal scaling regimes (greater than one year). These results correspond to the atmospheric circulation of the Asian monsoon system and are explained in detail. Similar dynamic processes of the wet deposition of BaP and PM2.5 suggested that the main removal process of atmospheric BaP was rainfall deposits of PM2.5-bound BaP. Furthermore, cross-correlations between BaP (or PM2.5) and precipitation at the long time-scale have a multi-fractal nature and long-term persistent power-law decaying behavior. The temporal evolutions of the multi-fractality were investigated by the approach of a sliding window. Based on the evolution curves of multi-fractal parameters, the wet deposition pathway of PM2.5-bound BaP is discussed. Finally, the contribution degree of wet deposition to PM2.5-bound BaP was derived from the coefficient of determination. It was demonstrated that about 45% and 60% of atmospheric BaP removal can be attributed to the wet deposition pathway of PM2.5-bound BaP for the Tsuan Wan and Central/Western District areas, respectively. The findings in this paper are of great significance for further study on the removal mechanism of atmospheric BaP in the future. The MF-DCCA method provides a novel approach to assessing the geochemical cycle dynamics of BaP.

Funder

National Natural Science Foundation of China

Scientific Research Fund of Hunan Province Education Department

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3