Accurate Characterization of Land Cover in Urban Environments: Determining the Importance of Including Obscured Impervious Surfaces in Urban Heat Island Models

Author:

Coseo Paul,Larsen Larissa

Abstract

Urban heat islands (UHI) increase summer temperatures and can threaten human well-being during extreme heat events. Since urbanization plays a key role in UHI development, accurate quantification of land cover types is critical to their identification. This study examines how quantifying land cover types using both two- and three-dimensional approaches to land cover quantification affects an UHI model’s explanatory power. Two-dimensional approaches treat tree canopies as a land cover, whereas three-dimensional approaches document the land cover areas obscured under tree canopies. We compare how accurately the two approaches explain elevated air temperatures in Chicago, Illinois. Our results show on average 14.1% of impervious surface areas went undocumented using a two-dimensional approach. The most common concealed impervious surfaces were sidewalks, driveways, and parking lots (+6.2%), followed by roads (+6.1%). Yet, the three-dimensional approach did not improve the explanatory power of a UHI model substantially. At 2 a.m., the adjusted R2 increased from 0.64 for a two-dimensional analysis to 0.68 for a three-dimensional analysis. We found that the less time consuming two-dimensional quantification of land covers was sufficient to predict neighborhood UHIs. As climate change exacerbates UHI, more cities will map urban hotspots and this research increases our understanding of alternative approaches.

Funder

Graham Sustainability Institute

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3