Field experiment on a vegetation-wicking geotextile-reinforced base for a permeable sidewalk

Author:

Xie Xiangbin,Yang Gengxin,Liu Zhao,Tang Yelin,Chu Jingying,Wen Wenhao,Chen Aolong,Guo Jun,Luo LeiKe

Abstract

Wicking geotextiles have proven effective in reducing water content in road bases under both saturated and unsaturated conditions, thereby increasing granular base strength and mitigating moisture-related damage to the pavement. Despite their effectiveness in paved roads, the use of wicking geotextiles in permeable road and sidewalk, particularly in areas requiring robust drainage such as sponge cities, is not well explored. In “sponge city” roads, moisture content fluctuations and subsequent damage to the structure often cause concern, and the wicking geotextile’s drainage could be a potential solution. Therefore, this study aims to investigate and quantify the effectiveness of wicking geotextiles in reducing the moisture content and improving the resilient modulus of permeable sidewalk base layers. The moisture contents of unstabilized and one-directional wicking geotextile- and two-directional wicking geotextile-stabilized bases under permeable paving bricks were monitored with an interval of 7–10 days for over a year. An analytical approach to reconstruct daily moisture content in the base layer was proposed based on the simulated rainfall saturation test. This approach further assesses the enhancements in resilient modulus due to the drainage capabilities of wicking geotextiles. The experimental results indicated that the two-directional wicking geotextile outperforms its one-directional counterpart and both wicking geotextiles outperformed the control condition in terms of drainage efficiency. By reconstructing the daily moisture content and utilizing the relative damage model, the two-directional wicking geotextile significantly improved the annual equivalent resilient modulus of the base layer under permeable paving bricks.

Publisher

Frontiers Media SA

Reference39 articles.

1. AASHTO soil classification system1993

2. Moisture and soil strength monitoring of a railway embankment remediated with wicking geotextile;Alvarenga,2021

3. Experimental study on the effect of fabric parameter on drainage performance of wicking geotextile;Bai;Fibers Polym.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3