Changes in Global Blocking Character in Recent Decades

Author:

Lupo Anthony,Jensen Andrew,Mokhov Igor,Timazhev Alexander,Eichler Timothy,Efe BahtiyarORCID

Abstract

A global blocking climatology published by this group for events that occurred during the late 20th century examined a comprehensive list of characteristics that included block intensity (BI). In addition to confirming the results of other published climatologies, they found that Northern Hemisphere (NH) blocking events (1968–1998) were stronger than Southern Hemisphere (SH) blocks and winter events are stronger than summer events in both hemispheres. This work also examined the interannual variability of blocking as related to El Niño and Southern Oscillation (ENSO). Since the late 20th century, there is evidence that the occurrence of blocking has increased globally. A comparison of blocking characteristics since 1998 (1998–2018 NH; 2000–2018 SH) shows that the number of blocking events and their duration have increased significantly in both hemispheres. The blocking BI has decreased by about six percent in the NH, but there was little change in the BI for the SH events. Additionally, there is little or no change in the primary genesis regions of blocking. An examination of variability related to ENSO reveals that the NH interannual-scale variations found in the earlier work has reversed in the early 21st century. This could either be the result of interdecadal variability or a change in the climate. Interdecadal variations are examined as well.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-source observations on the effect of atmospheric blocking on air quality in İstanbul: a study case;Environmental Monitoring and Assessment;2024-07-04

2. Severe convective outbreak in Siberia in May 2020: Event analysis and high-resolution simulation;Atmospheric Research;2024-03

3. Research in Dynamic Meteorology in Russia in 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12

4. Russian Climate Research in 2019–2022;Izvestiya, Atmospheric and Oceanic Physics;2023-12

5. Research in Dynamic Meteorology in Russia in 2019–2022;Известия Российской академии наук. Физика атмосферы и океана;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3