Modeling Dust Direct Radiative Feedbacks in East Asia During the Last Glacial Maximum

Author:

Cheng Xugeng,Xie Xiaoning,Shi Zhengguo,Li Xinzhou,Zhao TianliangORCID,Liu Xiaodong

Abstract

In this study, using the fourth version of the Community Atmosphere Model (CAM4) with a bulk aerosol model parameterization (BAM) for dust size distribution (CAM4-BAM), East Asian dust and its direct radiative feedbacks (DRF) during the Last Glacial Maximum are analyzed by intercomparing results between the experiments with (Active) and without (Passive) the DRF. This CAM4-BAM captures the expected characteristics that the dust aerosol optical depth and loading over East Asia during the Last Glacial Maximum (LGM) were significantly greater compared to the current climate. A comparative analysis of the Active and Passive experiments reveals that consideration of the dust–radiation interaction can significantly reduce dust emissions and then weaken the whole dust cycle, including loading, transport, and dry and wet depositions over East Asia. Further analysis of the dust–radiation feedback shows that the DRF decreases surface sensible heat, mainly owing to the negative surface forcing induced by dust with a value of −11.8 W m−2. The decreased surface sensible heat weakens the turbulent energy within the planetary boundary layer and the surface wind speed, and then reduces the regional dust emissions. This process creates a negative DRF–emission feedback loop to affect the dust cycle during the LGM. Further analysis reveals that the dust emissions in the LGM over East Asia were more reduced, with amounts of −77.2 Tg season−1 by the negative DRF–emission feedback, compared to the current climate with −6.8 Tg season−1. The two ratios of this reduction to their emissions are close to −10.7% for the LGM and −7.5% for the current climate.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3