Sensitivity studies of dust ice nuclei effect on cirrus clouds with the Community Atmosphere Model CAM5

Author:

Liu X.,Shi X.,Zhang K.,Jensen E. J.,Gettelman A.,Barahona D.,Nenes A.,Lawson P.

Abstract

Abstract. In this study the effect of dust aerosol on upper tropospheric cirrus clouds through heterogeneous ice nucleation is investigated in the Community Atmospheric Model version 5 (CAM5) with two ice nucleation parameterizations. Both parameterizations consider homogeneous and heterogeneous nucleation and the competition between the two mechanisms in cirrus clouds, but differ significantly in the number concentration of heterogeneous ice nuclei (IN) from dust. Heterogeneous nucleation on dust aerosol reduces the occurrence frequency of homogeneous nucleation and thus the ice crystal number concentration in the Northern Hemisphere (NH) cirrus clouds compared to simulations with pure homogeneous nucleation. Global and annual mean shortwave and longwave cloud forcing are reduced by up to 2.0 ± 0.1 W m−2 (1σ uncertainty) and 2.4 ± 0.1 W m−2, respectively due to the presence of dust IN, with the net cloud forcing change of −0.40 ± 0.20 W m−2. Comparison of model simulations with in situ aircraft data obtained in NH mid-latitudes suggests that homogeneous ice nucleation may play an important role in the ice nucleation at these regions with temperatures of 205–230 K. However, simulations overestimate observed ice crystal number concentrations in the tropical tropopause regions with temperatures of 190–205 K, and overestimate the frequency of occurrence of high ice crystal number concentration (> 200 L−1) and underestimate the frequency of low ice crystal number concentration (< 30 L−1) at NH mid-latitudes. These results highlight the importance of quantifying the number concentrations and properties of heterogeneous IN (including dust aerosol) in the upper troposphere from the global perspective.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 90 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3