On the Predictability of Radiation Fog Formation in a Mesoscale Model: A Case Study in Heterogeneous Terrain

Author:

Bergot ThierryORCID,Lestringant Renaud

Abstract

This study evaluates the predictability of the formation phase of a radiation fog event observed during the night of 31 October 2015 to 01 November 2015 in the north-east of France at three sites managed by OPE (Observatoire Pérenne de l’Environnement). The fog layer shows significantly different behaviors at the three areas, which are located only a few kilometers apart. Three fog life cycles were observed: the formation of a dense adiabatic fog, the formation of a thin patchy fog, or no fog formation despite favorable conditions. This event was studied with the Meso-NH numerical mesoscale model at two horizontal resolutions, 500 m and 50 m. Simulations at 50 m allow estimation of the spread of the predicted parameters over the heterogeneous terrain studied. These numerical simulations strongly suggest that this event involved numerous interactions and complex circulations. The wind above the nocturnal boundary layer greatly affects the transition of shallow patchy fog into thick adiabatic fog. These numerical simulations also show that the occurrence and type of fog could be very different over a small but heterogeneous area. It is also interesting to note that the spread of the simulated parameters was very high during the transition from shallow fog to a deep fog layer. The spread was concentrated during the regime transition between the fog formation and its maturity. This appeared to be the result of the complex interplay of processes at numerous ranges of scale. A new concept called “pseudo-process diagram” is presented. These pseudo-process diagrams are very good tools to analyze fog, and allow a good illustration of the spread of fog during this chaotic phase. This kind of concept seems a promising tool to analyze fog predictability in depth.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3