Cloud Processing of Aerosol Particles in Marine Stratocumulus Clouds

Author:

Flossmann Andrea I.ORCID,Wobrock Wolfram

Abstract

Cloud processing of aerosol particles is an important process and is, for example, thought to be responsible for the so-called “Hoppel-minimum” in the marine aerosol particle distribution or contribute to the cell organization of marine boundary layer clouds. A numerical study of the temporal and spatial scales of the processing of aerosol particles by typical marine stratocumulus clouds is presented. The dynamical framework is inspired by observations during the VOCALS (Variability of the American Monsoon System Ocean-Cloud-Atmosphere-Land Study) Regional Experiment in the Southeast Pacific. The 3-D mesoscale model version of DESCAM (Detailed Scavenging Model) follows cloud microphysics of the stratocumulus deck in a bin-resolved manner and has been extended to keep track of cloud-processed particles in addition to non-processed aerosol particles in the air and inside the cloud drops. The simulation follows the evolution of the processing of aerosol particles by the cloud. It is found that within one hour almost all boundary layer aerosol particles have passed through at least one cloud cycle. However, as the in-cloud residence times of the particles in the considered case are only on the order of minutes, the aerosol particles remain essentially unchanged. Our findings suggest that in order to produce noticeable microphysical and dynamical effects in the marine boundary layer clouds, cloud processing needs to continue for extended periods of time, exceeding largely the time period considered in the present study. A second model study is dedicated to the interaction of ship track particles with marine boundary layer clouds. The model simulates quite satisfactorily the incorporation of the ship plume particles into the cloud. The observed time and spatial scales and a possible Twomey effect were reproduced.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference26 articles.

1. Atmospheric Chemistry and Physics;Seinfeld,1998

2. Chemistry of the Natural Atmosphere;Warneck,2000

3. Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties

4. Aerosol Pollution Impact on Precipitation;Levin,2008

5. Aerosol-Cloud-Climate Interactions;Hobbs,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3