Abstract
Four cross-coupled models were used to investigate the relative contributions of atmospheric and oceanic components to the asymmetry of the El Niño–Southern Oscillation (ENSO). Strong El Niño and La Niña events related to the negative heat flux feedbacks were found to be determined mainly by the atmospheric component, and the stronger sea surface temperature (SST) anomalies in the warm phase did not lead to an increased SST asymmetry. The skewness of the four models could be affected by both atmospheric and oceanic components; the atmospheric component determines the strength of positive and negative SST anomalies, and the oceanic component affects the strength of the negative SST anomalies in the cold phase under the same atmospheric component group. The Bjerknes stability index (BJ index) of warm and cold phases contributed to the El Niño–La Niña SSTA asymmetries in observation, but the BJ index did not necessarily explain the El Niño–La Niña SSTA asymmetries in climate model simulations. The SST asymmetries in these four models were closely associated with convective precipitation and wind stress asymmetries, which are also determined by both the atmospheric and oceanic components.
Funder
the National Natural Science Foundation of China
the National Basic Research Program of China, 973 Program
the China Postdoctoral Science Foundation
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献