Data Mining and Neural Networks Based Self-Adaptive Protection Strategies for Distribution Systems with DGs and FCLs

Author:

Tang Wen-Jun,Yang Hong-Tzer

Abstract

In light of the development of renewable energy and concerns over environmental protection, distributed generations (DGs) have become a trend in distribution systems. In addition, fault current limiters (FCLs) may be installed in such systems to prevent the short-circuit current from exceeding the capacity of the power apparatus. However, DGs and FCLs can lead to problems, the most critical of which is miscoordination in protection system. This paper proposes overcurrent protection strategies for distribution systems with DGs and FCLs. Through the proposed approach, relays with communication ability can determine their own operating states with the help of an operation setting decision tree and topology-adaptive neural network model based on data processed through continuous wavelet transform. The performance and effectiveness of the proposed protection strategies are verified by the simulation results obtained from various system topologies with or without DGs, FCLs, and load variations.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Probabilistic Approach to Adaptive Protection in the Smart Grid;ACM Transactions on Cyber-Physical Systems;2024-04-05

2. Enhancing protection in AC microgrids: An adaptive approach with ANN and ANFIS models;Computers and Electrical Engineering;2024-04

3. Multi‐agent protection scheme for microgrid using deep learning;IET Renewable Power Generation;2024-01-18

4. On the DC Microgrid Protection;2023 24th International Middle East Power System Conference (MEPCON);2023-12-19

5. Adaptive Machine-Learning-Based Transmission Line Fault Detection and Classification Connected to Inverter-Based Generators;Energies;2023-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3