Multi‐agent protection scheme for microgrid using deep learning

Author:

Najar Abolfazl1ORCID,Kazemi Karegar Hossein1ORCID,Esmaeilbeigi Saman1ORCID

Affiliation:

1. Electrical Engineering Department Shahid Beheshti University Velenjak Tehran Iran

Abstract

AbstractProducing clean energy and feeding critical loads in islanding mode are the main reasons for interest in microgrids. Different operation topologies of microgrids make traditional protection schemes inefficient. This paper proposes a multi‐agent protection scheme in which each protection agent can detect different fault events and isolate faulty phases at a fast rate. A unique algorithm is utilized for determining fault location in microgrids and system operators are informed accordingly. Microgrids have various operation modes due to the stochastic behavior of distributed generators and different topologies. Here, a significant number of operating conditions of the studied microgrid are considered. These operation conditions are simulated in the DIgSILENT Power Factory, and different parameters are stored. Raw measured parameters need to be pre‐processed by a signal processing method in MATLAB. Discrete wavelet transform is chosen for this purpose. Deep learning is used as a machine learning technique due to the various operation modes of the microgrid. Deep neural networks are constructed using Python programming language. The proposed scheme ensures high accuracy in fault detection and fault location in the microgrid, as well as fault isolation in different operation conditions.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3