LIMOFilling: Local Information Guide Hole-Filling and Sharp Feature Recovery for Manifold Meshes

Author:

Gou GuohuaORCID,Sui Haigang,Li Dajun,Peng Zhe,Guo Bingxuan,Yang Wei,Huang Duo

Abstract

Manifold mesh, a triangular network for representing 3D objects, is widely used to reconstruct accurate 3D models of objects structure. The complexity of these objects and self-occlusion, however, can cause cameras to miss some areas, creating holes in the model. The existing hole-filling methods do not have the ability to detect holes at the model boundaries, leaving overlaps between the newly generated triangles, and also lack the ability to recover missing sharp features in the hole-region. To solve these problems, LIMOFilling, a new method for filling holes in 3D manifold meshes was proposed, and recovering the sharp features. The proposed method, detects the boundary holes robustly by constructing local overlap judgments, and provides the possibility for sharp features recovery using local structure information, as well as reduces the cost of maintaining manifold meshes thus enhancing their utility. The novel method against the existing methods have been tested on different types of holes in four scenes. Experimental results demonstrate the visual effect of the proposed method and the quality of the generated meshes, relative to the existing methods. The proposed hole-detection algorithm found almost all of the holes in different scenes and qualitatively, the subsequent repairs are difficult to see with the naked eye.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Autonomous Object Model Acquisition with a Robotic Arm;2023 20th International Conference on Ubiquitous Robots (UR);2023-06-25

2. A Novel, Fast and Robust Triangular Mesh Reconstruction from a Wire-Frame 3D Model with Holes for CAD/CAM Systems;Computational Science and Its Applications – ICCSA 2022;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3