Sentinel-1 Spatiotemporal Simulation Using Convolutional LSTM for Flood Mapping

Author:

Ulloa Noel Ivan,Yun Sang-HoORCID,Chiang Shou-HaoORCID,Furuta Ryoichi

Abstract

The synthetic aperture radar (SAR) imagery has been widely applied for flooding mapping based on change detection approaches. However, errors in the mapping result are expected since not all land-cover changes are flood-induced, and those changes are sensitive to SAR data, such as crop growth or harvest over agricultural lands, clearance of forested areas, and/or modifications on the urban landscape. This study, therefore, incorporated historical SAR images to boost the detection of flood-induced changes during extreme weather events, using the Long Short-Term Memory (LSTM) method. Additionally, to incorporate the spatial signatures for the change detection, we applied a deep learning-based spatiotemporal simulation framework, Convolutional Long Short-Term Memory (ConvLSTM), for simulating a synthetic image using Sentinel One intensity time series. This synthetic image will be prepared in advance of flood events, and then it can be used to detect flood areas using change detection when the post-image is available. Practically, significant divergence between the synthetic image and post-image is expected over inundated zones, which can be mapped by applying thresholds to the Delta image (synthetic image minus post-image). We trained and tested our model on three events from Australia, Brazil, and Mozambique. The generated Flood Proxy Maps were compared against reference data derived from Sentinel Two and Planet Labs optical data. To corroborate the effectiveness of the proposed methods, we also generated Delta products for two baseline models (closest post-image minus pre-image and historical mean minus post-image) and two LSTM architectures: normal LSTM and ConvLSTM. Results show that thresholding of ConvLSTM Delta yielded the highest Cohen’s Kappa coefficients in all study cases: 0.92 for Australia, 0.78 for Mozambique, and 0.68 for Brazil. Lower Kappa values obtained in the Mozambique case can be subject to the topographic effect on SAR imagery. These results still confirm the benefits in terms of classification accuracy that convolutional operations provide in time series analysis of satellite data employing spatially correlated information in a deep learning framework.

Funder

Nanyang Technological University

MOST

Taiwan’s Soil and Water Conservation Bureau

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3