Extraction of Information on the Flooding Extent of Agricultural Land in Henan Province Based on Multi-Source Remote Sensing Images and Google Earth Engine

Author:

Cui Jiaqi12,Guo Yulong12ORCID,Xu Qiang12,Li Donghao12,Chen Weiqiang12,Shi Lingfei12,Ji Guangxing12ORCID,Li Ling12

Affiliation:

1. School of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China

2. Human Engineering Research Center of Land Consolidation and Ecological Restoration, Henan Agricultural University, Zhengzhou 450002, China

Abstract

Sudden flood disasters cause serious damage to agricultural production. Rapidly extracting information such as the flooding extent of agricultural land and capturing the influence of flooding on crops provides important guidelines for estimating the flood-affected area, promoting post-disaster farmland restoration, and providing an auxiliary decision-making basis for flood prevention and disaster relief departments. Taking the flood event in Henan and Shanxi Provinces as example, based on the characteristics of the variations in radar data and optical data before and after the disaster, we propose an extent information extraction method for the flood inundation area and the flood-affected area of agricultural land. This method consists of change detection, threshold extraction, and superposition analysis, which weakens the negative impact of the radar data speckle noise and cloud contamination of the optical data on the extraction of the agricultural land flooding to a certain extent. The method was developed based on a flood event in Henan Province and validated in Shanxi Province. The results show that the production of this method have a clear boundary and accurate extent, and the overall precisions of the flood inundation area and flood-affected area extraction are 0.87 and 0.92, respectively. The proposed method combines the advantages of both radar and optical remote sensing data in extracting the specific extents of the flood inundation area and the flood-affected area in large spatial scale. Finally, the impact of time window size to the performance of the method is further analyzed. In the application of the proposed method, the Google Earth Engine (GEE) platform provides a low-cost, fast, and convenient way to extract flood information from remote sensing data. The proposed scheme provides a scientific data basis for restoring production of agricultural land after a flood disaster, as well as for national post-disaster damage assessment and disaster relief decision making.

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3