Measurement and Evaluation of Calorimetric Descriptors for the Suitability for Evolutionary High-Throughput Material Development

Author:

Toenjes Anastasiya,Sonnenberg Heike,Plump Christina,Drechsler Rolf,von Hehl Axel

Abstract

A novel method for evolutionary material development by using high-throughput processing is established. For the purpose of this high-throughput approach, spherical micro samples are used, which have to be characterized, up-scaled to macro level and valued. For the evaluation of the microstructural state of the micro samples and the associated micro-properties, fast characterization methods based on physical testing methods such as calorimetry and universal microhardness measurements are developed. Those measurements result in so-called descriptors. The increase in throughput during calorimetric characterization using differential scanning calorimetry is achieved by accelerating the heating rate. Consequently, descriptors are basically measured in a non-equilibrium state. The maximum heating rate is limited by the possibility to infer the microstructural state from the calorimetric results. The substantial quality of the measured descriptors for micro samples has to be quantified and analyzed depending on the heating rate. In this work, the first results of the measurements of calorimetric descriptors with increased heating rates for 100Cr6 will be presented and discussed. The results of low and high heating rates will be compared and analyzed using additional microhardness measurements. Furthermore, the validation of the method regarding the suitability for the evolutionary material development includes up-scaling to macro level and therefore different sample masses will be investigated using micro and macro samples during calorimetry.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference9 articles.

1. Solidification of single droplets under combined cooling conditions

2. High-Throughput Exploration of Evolutionary Structural Materials

3. Zeit-Temperatur-Auflösungs- und Zeit-Temperatur-Ausscheidungs-Diagramme von Aluminiumlegierungen;Keßler;Fortschritte in der Metallographie,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3