New Descriptor-Based Material Characterization Method Using Micro Compression Test on Spherical Microsamples

Author:

Sonnenberg Heike1,Clausen Brigitte1

Affiliation:

1. Leibniz Institute for Materials Engineering—IWT 1 , 28359Bremen, DE

Abstract

A newly developed micro compression test on spherical samples was introduced as a fast mechanical material characterization method within a novel high-throughput alloy development process of structural materials. During the validation phase of the new micro compression test method, conventionally manufactured bearing balls with diameters of 0.6–1.0 mm were used. Microspheres of different rolling bearing steels, such as AISI 52100 (DIN 100Cr6) and AISI 420 (DIN X46Cr13), were therefore studied in detail. The micro compression test made possible an investigation of the elastic-plastic deformation behavior during loading and unloading of metallic microspheres. So-called descriptors were extracted from continuously measured force-displacement curves as fast characteristic values. When the geometry was taken into account, normalized descriptors enabled the comparison of different sample sizes. A wide database of 20 investigated metallic alloys in over 60 different heat treatment conditions showed the potential of the new mechanical characterization method, since changes in alloy composition and heat treatment were reflected with a high sensitivity by the descriptors of the micro compression test. Furthermore, recent results show that this test delivers robust descriptors regarding a possible material-specific scatter within a batch. Additional universal microhardness measurements, as well as x-ray diffraction investigations for obtaining the retained austenite content, enabled a detailed analysis and the validation of the descriptors. Although the main reason for the development of the micro compression test was initially based on a sustainable and resource-efficient high-throughput approach within the search for new alloy compositions, the results might be of great interest for the ASTM community regarding the potential material characterization of bearing balls.

Publisher

ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3