Biogas Potential of Coffee Processing Waste in Ethiopia

Author:

Chala Bilhate,Oechsner Hans,Latif Sajid,Müller JoachimORCID

Abstract

Primary coffee processing is performed following the dry method or wet method. The dry method generates husk as a by-product, while the wet method generates pulp, parchment, mucilage, and waste water. In this study, characterization, as well as the potential of husk, pulp, parchment, and mucilage for methane production were examined in biochemical methane potential assays performed at 37 °C. Pulp, husk, and mucilage had similar cellulose contents (32%). The lignin contents in pulp and husk were 15.5% and 17.5%, respectively. Mucilage had the lowest hemicellulose (0.8%) and lignin (5%) contents. The parchment showed substantially higher lignin (32%) and neutral detergent fiber (96%) contents. The mean specific methane yields from husk, pulp, parchment, and mucilage were 159.4 ± 1.8, 244.7 ± 6.4, 31.1 ± 2.0, and 294.5 ± 9.6 L kg−1 VS, respectively. The anaerobic performance of parchment was very low, and therefore was found not to be suitable for anaerobic fermentation. It was estimated that, in Ethiopia, anaerobic digestion of husk, pulp, and mucilage could generate as much as 68 × 106 m3 methane per year, which could be converted to 238,000 MWh of electricity and 273,000 MWh of thermal energy in combined heat and power units. Coffee processing facilities can utilize both electricity and thermal energy for their own productive purposes.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3