A Review on Real-Size Epoxy Cast Resin Insulators for Compact High Voltage Direct Current Gas Insulated Switchgears (GIS) and Gas Insulated Transmission Lines (GIL)—Current Achievements and Envisaged Research and Development

Author:

Zebouchi Nabila,Haddad Manu. A.ORCID

Abstract

Due to the ever-increasing demand for electricity in the one hand and the environmental constraints to use clean energy on the other hand, the global production of energy from remote renewable sources, particularly from large hydropower plants and offshore wind farms and their connection to the grid are expected to grow significantly in the future. Consequently, the demand to carry this electric power by high voltage direct current (HVDC) technology will increase too. The most suitable HVDC power transmission technology to deliver large amounts of power, exceeding a capacity of 5 GW per bipolar system over long distances with lower losses is by using compact HVDC gas insulated transmission lines (DC GIL) and gas insulated switchgears (DC GIS) with rated voltage (maximum continuous operating voltage) of ±550 kV and 5000 A which are presently under development worldwide. Among the critical challenges for the development of these HVDC gas insulated systems, there are the epoxy cast resin insulators that are used to separate gas compartments also called spacers. Indeed, thorough research studies have been and still being carried out to well understand and clarify the electrical insulation characteristics of HVDC spacers using mainly cylindrical samples and small insulator models, where useful results have been obtained and proposed for implementation in real compact gas insulated systems. However, few practical investigations have been undertaken on real size spacers (product scale) to verify such research outcomes and validate the reliability of the spacers to collect experiences or for commercial use. This paper reviews the current achievements of real size HVDC spacers development. It describes the basic electric field calculation and spacers design, the verification of the insulation performance and validation testing. It gives today’s commercially available compact HVDC GIS/GIL and finally it presents the envisaged future research and development.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference83 articles.

1. World´s Most Powerful Underground Power Transmission Cable Systemhttps://www.nkt.com/products-solutions/high-voltage-cable-solutions/innovation/640-kv-extruded-hvdc-cable-systems

2. Charge accumulation on insulating spacers for HVDC GIS

3. DC dielectric characteristics and conception of insulation design for DC GIS

4. Development of insulation structure and enhancement of insulation reliability of 500 kV DC GIS

5. Development and design of DC-GIS

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3