Abstract
Benthic habitats are structurally complex and ecologically diverse ecosystems that are severely vulnerable to human stressors. Consequently, marine habitats must be mapped and monitored to provide the information necessary to understand ecological processes and lead management actions. In this study, we propose a semiautomated framework for the detection and mapping of benthic habitats and seagrass species using convolutional neural networks (CNNs). Benthic habitat field data from a geo-located towed camera and high-resolution satellite images were integrated to evaluate the proposed framework. Features extracted from pre-trained CNNs and a “bagging of features” (BOF) algorithm was used for benthic habitat and seagrass species detection. Furthermore, the resultant correctly detected images were used as ground truth samples for training and validating CNNs with simple architectures. These CNNs were evaluated for their accuracy in benthic habitat and seagrass species mapping using high-resolution satellite images. Two study areas, Shiraho and Fukido (located on Ishigaki Island, Japan), were used to evaluate the proposed model because seven benthic habitats were classified in the Shiraho area and four seagrass species were mapped in Fukido cove. Analysis showed that the overall accuracy of benthic habitat detection in Shiraho and seagrass species detection in Fukido was 91.5% (7 classes) and 90.4% (4 species), respectively, while the overall accuracy of benthic habitat and seagrass mapping in Shiraho and Fukido was 89.9% and 91.2%, respectively.
Subject
General Earth and Planetary Sciences
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献