Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane

Author:

Pirtskhalava Malak,Vishnepolsky Boris,Grigolava Maya,Managadze Grigol

Abstract

Antimicrobial peptides (AMPs) are anti-infectives that have the potential to be used as a novel and untapped class of biotherapeutics. Modes of action of antimicrobial peptides include interaction with the cell envelope (cell wall, outer- and inner-membrane). A comprehensive understanding of the peculiarities of interaction of antimicrobial peptides with the cell envelope is necessary to perform a rational design of new biotherapeutics, against which working out resistance is hard for microbes. In order to enable de novo design with low cost and high throughput, in silico predictive models have to be invoked. To develop an efficient predictive model, a comprehensive understanding of the sequence-to-function relationship is required. This knowledge will allow us to encode amino acid sequences expressively and to adequately choose the accurate AMP classifier. A shared protective layer of microbial cells is the inner, plasmatic membrane. The interaction of AMP with a biological membrane (native and/or artificial) has been comprehensively studied. We provide a review of mechanisms and results of interactions of AMP with the cell membrane, relying on the survey of physicochemical, aggregative, and structural features of AMPs. The potency and mechanism of AMP action are presented in terms of amino acid compositions and distributions of the polar and apolar residues along the chain, that is, in terms of the physicochemical features of peptides such as hydrophobicity, hydrophilicity, and amphiphilicity. The survey of current data highlights topics that should be taken into account to come up with a comprehensive explanation of the mechanisms of action of AMP and to uncover the physicochemical faces of peptides, essential to perform their function. Many different approaches have been used to classify AMPs, including machine learning. The survey of knowledge on sequences, structures, and modes of actions of AMP allows concluding that only possessing comprehensive information on physicochemical features of AMPs enables us to develop accurate classifiers and create effective methods of prediction. Consequently, this knowledge is necessary for the development of design tools for peptide-based antibiotics.

Funder

International Science and Technology Center

Publisher

MDPI AG

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3