Applicability Analysis of Indices-Based Fault Detection Technique of Six-Phase Induction Motor

Author:

Farag KhaledORCID,Shawier Abdullah,Abdel-Khalik Ayman S.,Ahmed Mohamed M.,Ahmed Shehab

Abstract

The multiphase induction motor is considered to be the promising alternative to the conventional three-phase induction motor, especially in safety-critical applications because of its inherent fault-tolerant feature. Therefore, the attention of many researchers has been paid to develop different techniques for detecting various fault types of multiphase induction motors, to securely switch the control mode of the multiphase drive system to its post-fault operation mode. Therefore, several fault detection methods have been researched and adapted; one of these methods is the indices-based fault detection technique. This technique was firstly introduced to detect open-phase fault of multiphase induction motors. The main advantage of this technique is that its mathematical formulation is straightforward and can easily be understood and implemented. In this paper, the study of the indices-based fault detection technique has been extended to test its applicability in detecting some other stator and rotor fault types of multiphase induction motors, namely, open-phase, open-switch, bad connection and broken rotor bar faults. Experimental and simulation validations of this technique are also introduced using a 1 kW prototype symmetrical six-phase induction motor.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3