Abstract
Multiphase drives offer enhanced fault-tolerant capabilities compared with conventional three-phase ones. Their phase redundancy makes them able to continue running in the event of faults (e.g., open/short-circuits) in certain phases. Moreover, their greater number of degrees of freedom permits improving diagnosis and performance, not only under faults affecting individual phases, but also under those affecting the machine/drive as a whole. That is the case of failures in the dc link, resolver/encoder, control unit, cooling system, etc. Accordingly, multiphase drives are becoming remarkable contenders for applications where high reliability is required, such as electric vehicles and standalone/off-shore generation. Actually, the literature on the subject has grown exponentially in recent years. Various review papers have been published, but none of them currently cover the state-of-the-art in a comprehensive and up-to-date fashion. This two-part paper presents an overview concerning fault tolerance in multiphase drives. Hundreds of citations are classified and critically discussed. Although the emphasis is put on fault tolerance, fault detection/diagnosis is also considered to some extent, because of its importance in fault-tolerant drives. The most important recent advances, emerging trends and open challenges are also identified. Part 1 provides a comprehensive survey considering numerous kinds of faults, whereas Part 2 is focused on phase/switch open-circuit failures.
Funder
Xunta de Galicia
Ministry of Science, Innovation and Universities
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Control and Optimization,Mechanical Engineering,Computer Science (miscellaneous),Control and Systems Engineering
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献