Influence of Driving Direction on the Stability of a Group of Headings Located in a Field of High Horizontal Stresses in the Polish Underground Copper Mines

Author:

Adach-Pawelus KarolinaORCID,Pawelus Daniel

Abstract

This paper investigates the problem of stability in a group of headings driven in high horizontal stress fields in the copper ore mines of the Legnica-Glogow Copper Belt (LGCB). The headings are protected with the roof bolting system. This problem is of high importance due to special safety regulations which apply in mining workings serving as airways and haulageways. The analysis was performed for a group of four headings driven in the geological and mining conditions of the Polkowice-Sieroszowice mine. The stability of the headings was evaluated with the use of Finite Element Method (FEM). The parameters of the rocks used in the numerical modeling have been determined on the basis of the Hoek–Brown classification, with the use of the RocLab 1.0 software. The parameters of the stress field have been identified on the basis of in situ measurements, which were performed in the Polkowice-Sieroszowice mine in 2012. The measurements were carried out with the use of the overcoring method, which is a stress relief method. A CSIRO HI probe was used as the measuring device. The tests were carried out on three measuring points, on which six successful tests were performed. The measurements confirmed the presence of high horizontal stresses in the rock mass. Numerical modeling was performed using the Phase2 v.8.0 software, in a triaxial stress state and in a plane strain state. The rock mass was described with an elastic-plastic model with softening. Numerical analyses were based on the Mohr–Coulomb failure criterion. It was assumed that the optimal measure of the stability of the group of headings is the range of the formed zone of yielded rock mass in the excavation roof. Numerical simulations have shown that the direction of driving the headings in the field of increased horizontal stresses may be of key importance for the stability of the headings in LGOM mines. The greatest extent of the yielded rock mass zone in the excavation roof occurred when the group of headings was driven in the direction perpendicular to the direction of the maximum horizontal stress component σH. The obtained results served to provide an example of the application of a roof bolting system to protect headings driven in unfavorable conditions in a high horizontal stress field.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

1. The state of stresses in the upper part of the earth's crust

2. Horizontal stress and its effects on longwall ground control;Mark;Min. Eng.,1991

3. Roof bolting in coal mining—Design and implementation;Daws;Min. News,1992

4. Horizontal stress and longwall headgate ground control;Mark;Min. Eng.,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3