Numerical Study on Failure Mechanisms of Deep Roadway Sidewalls with Different Height-Width Ratios and Lateral Pressures

Author:

Wu Xingzhong1,Zhang Yubao12ORCID,Xing Minglu12,Jiang Bo1,Fu Jianye1

Affiliation:

1. College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China

2. State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

The stability of roadway sidewalls is crucial to ensuring people’s safety and production efficiency in coal mining. This paper investigated the deformation and failure of deep roadway sidewalls, particularly the effects of height-width ratios and lateral pressure coefficients. Our research results indicate that brittle failure occurred in the diabase sidewall rock of the Datai coal mine, and a V-shaped pit was formed as a result of shear damage caused by high stress. When the height-width ratio of a roadway increases from 0.25 to 2.00, the tensile and shear plastic failure area of the sidewall increases, and vertical stress is transferred to a deep part of the roadway sidewall. There are two stress concentration zones and two stress peak points in the sidewall of a roadway. When the lateral pressure coefficient increases from 0.10 to 1.00, the tensile plastic zone of rock mass in the sidewall first decreases and gradually reaches stability. On the other hand, the shear failure area increases and then decreases. Similarly, the sidewall horizontal displacement decreases and then increases. Additionally, the vertical stress concentration position is located near the roadway sidewall.

Funder

National Natural Science Foundation of China

Major Program of Shandong Provincial Natural Science Foundation

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3