Analysis and Dynamic Evaluation of Eco-Environmental Quality in the Yellow River Delta from 2000 to 2020

Author:

Ma Dongling1,Huang Qingji1,Liu Baoze1,Zhang Qian1

Affiliation:

1. School of Surveying and Geo-Informatics, Shandong Jianzhu University, Jinan 250101, China

Abstract

With the rapid development of urbanization and population growth, the ecological environment in the Yellow River Delta has undergone significant changes. In this study, Landsat satellite data and Google Earth Engine (GEE) were utilized to dynamically evaluate the changes in eco-environmental quality in the Yellow River Delta region using the remote sensing ecological index (RSEI). Additionally, the CASA model was used to estimate net primary productivity (NPP) and explore the relationship between vegetation NPP, land-use and land-cover change (LUCC), and eco-environmental quality to reveal the complexity and related factors of eco-environmental quality changes in this region. The results show that: (1) Over the past 20 years, the eco-environmental quality in the Yellow River Delta region has changed in a “V” shape. The eco-environmental quality near the Yellow River Basin is relatively better, forming a diagonal “Y” shape, while the areas with poorer eco-environmental quality are mainly distributed in the coastal edge region of the Yellow River Delta. (2) The response of vegetation NPP to eco-environmental quality in the Yellow River Delta region is unstable. (3) Urban construction land in the Yellow River Delta region is strongly correlated with RSEI, and the absolute value of the dynamic degree of land use is as high as 8.78%, with significant land transfer changes. The correlation between arable land and RSEI is weak, while coastal mudflats are negatively correlated with RSEI, with the minimum absolute value of the dynamic degree of land use being −1.01%, and significant land transfer changes. There is no correlation between forest land and RSEI. Our research results can provide data support for the eco-environmental protection and sustainable development of the Yellow River Delta region and help local governments to take corresponding measures.

Funder

Natural Science Foundation of Shandong Province

Science and Technology Research Program for Colleges and Universities in Shandong Province

Key Topics of Art and Science in Shandong Province

Doctoral Fund Projects in Shandong Jianzhu University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3