Global vs. Local Models for Short-Term Electricity Demand Prediction in a Residential/Lodging Scenario

Author:

Buonanno AmedeoORCID,Caliano MartinaORCID,Pontecorvo Antonino,Sforza GianlucaORCID,Valenti Maria,Graditi Giorgio

Abstract

Electrical load forecasting has a fundamental role in the decision-making process of energy system operators. When many users are connected to the grid, high-performance forecasting models are required, posing several problems associated with the availability of historical energy consumption data for each end-user and training, deploying and maintaining a model for each user. Moreover, introducing new end-users to an existing network poses problems relating to their forecasting model. Global models, trained on all available data, are emerging as the best solution in several contexts, because they show higher generalization performance, being able to leverage the patterns that are similar across different time series. In this work, the lodging/residential electricity 1-h-ahead load forecasting of multiple time series for smart grid applications is addressed using global models, suggesting the effectiveness of such an approach also in the energy context. Results obtained on a subset of the Great Energy Predictor III dataset with several global models are compared to results obtained with local models based on the same methods, showing that global models can perform similarly to the local ones, while presenting simpler deployment and maintainability. In this work, the forecasting of a new time series, representing a new end-user introduced in the pre-existing network, is also approached under specific assumptions, by using a global model trained using data related to the existing end-users. Results reveal that the forecasting model pre-trained on data related to other end-users allows the attainment of good forecasting performance also for new end-users.

Funder

Ministry of Education, Universities and Research

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3