Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series

Author:

Gaweł Bartłomiej1ORCID,Paliński Andrzej1ORCID

Affiliation:

1. AGH University, Faculty of Management, 30-059 Krakow, Poland

Abstract

This study presents a novel approach for predicting hierarchical short time series. In this article, our objective was to formulate long-term forecasts for household natural gas consumption by considering the hierarchical structure of territorial units within a country’s administrative divisions. For this purpose, we utilized natural gas consumption data from Poland. The length of the time series was an important determinant of the data set. We contrast global techniques, which employ a uniform method across all time series, with local methods that fit a distinct method for each time series. Furthermore, we compare the conventional statistical approach with a machine learning (ML) approach. Based on our analyses, we devised forecasting methods for short time series that exhibit exceptional performance. We have demonstrated that global models provide better forecasts than local models. Among ML models, neural networks yielded the best results, with the MLP network achieving comparable performance to the LSTM network while requiring significantly less computational time.

Funder

Faculty of Management and by program “Excellence Initiative—Research University” for the AGH University of Krakow

Publisher

MDPI AG

Reference83 articles.

1. Report—Natural Gas (2022, March 10). Dolnośląski Instytut Studiów Energetycznych. Available online: https://dise.org.pl/en/report-natural-gas.

2. Gaz-System, S.A. (2022, March 10). Krajowy Dziesięcioletni Plan Rozwoju Systemu Przesyłowego. Available online: https://www.gaz-system.pl/pl/system-przesylowy/rozwoj-systemu-przesylowego/krajowe-plany-rozwoju.html.

3. (2022, March 10). GUS—Bank Danych Lokalnych (Local Data Bank), Available online: https://bdl.stat.gov.pl/bdl/dane/podgrup/temat.

4. (2023, August 27). Database—Eurostat. Available online: https://ec.europa.eu/eurostat/data/database.

5. Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality;Hyndman;Int. J. Forecast.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3