The Effect of Ash Silanization on the Selected Properties of Rigid Polyurethane Foam/Coal Fly Ash Composites

Author:

Zygmunt-Kowalska BeataORCID,Pielichowska KingaORCID,Trestka PatrycjaORCID,Ziąbka MagdalenaORCID,Kuźnia MonikaORCID

Abstract

According to the assumptions of the European Union, by 2050 it is planned to achieve climate neutrality. For this purpose, a document called the “European Green Deal” was established, which is a set of policies of the European Commission. One of the assumptions is a circular economy that takes into account the use of waste in subsequent production cycles. In order to meet the latest trends in environmentally friendly materials and use of waste in the production of building materials, composites of rigid polyurethane foam with 10 wt.% of waste were produced. Fly ash from coal combustion after modification was used as a filler. Three types of modifications were used: silanization, sieving, and both processes together. The silanization process was carried out for 1 and 2% silane ([3-(2-aminoethylamino)propyl]trimethoxysilane) concentration in relation to the fly ash mass. The sieving was aimed at reaching a fraction with a particle diameter below 75 µm. Six composites with modified fillers were compared and one material containing unchanged fly ash was used as a reference. A comparative analysis was carried out on the basis of surface analysis, thermal stability and physical properties. It turned out that the polyurethane materials modified fly ash silanized with 1% and 2% silane solution proved the best results in performed tests. On the other hand, the polyurethane foam containing sieved ash was characterized by the lowest flammability and the lowest emission of smoke and CO. The use of modified fly ash in technology of polyurethane foams can be a good method of its disposal and can increase the applicability of the composites.

Funder

Ministry of Science and Higher Education

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3