Impact of proximity of hard and soft segment on IR frequency of carbamate links correlating the mechanical properties of surface-functionalized fly ash–reinforced polyurethane composites

Author:

Sharma Ankit1,Paridwal Yogesh1,Sharma Shikha1,Rani Ashu1,Sharma Shobhana2,Sharma Sushil K.1ORCID

Affiliation:

1. Department of Pure and Applied Chemistry , University of Kota , Kota 324005 , India

2. Department of Chemistry , SS Jain Subodh PG College , Jaipur 302004 , India

Abstract

Abstract Polyurethane composites synthesized by interaction of fly ash filler with polyether polyol, cross-linking agent, and curing agent in a certain ratio. The study’s findings show that the mechanical properties of polyurethane composite are lowered by the hydroxyl moieties of surface-functionalized fly ash that are chemically or physically linked. The study also reveals that prior subjecting the samples of surface-functionalized fly ash–reinforced polyurethane composite material for destructive analysis by UTM for evaluating mechanical properties. The in-depth study of the IR spectroscopy data of the composites is done focusing onto the stretching frequency of carbonyl group of carbamate links the trend in mechanical behavior of the samples, the number of fly ash–carbamate links, and proximity of HS–SS (hard segment–soft segment) of fly ash–reinforced polyurethane composites can be foretold. By a detailed analysis of the patterns of carbonyl stretching frequencies of carbamate links, one can gain insight into the microphasic level of the separation and proximity of hard and soft segments in composites, which govern their mechanical properties. The relationships between carbamate carbonyl stretching frequencies and mechanical characteristics of composites have been found to be inversely correlated. In order to offset the excess hydroxyl group contribution due to OH-loaded fly ash, as indicated by the isocyanate (NCO) peak intensity (2,240–2,280 cm−1) in the composite’s infrared spectra, the studies were conducted at a higher index ratio (1.64).

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3