Affiliation:
1. Department of Pure and Applied Chemistry , University of Kota , Kota 324005 , India
2. Department of Chemistry , SS Jain Subodh PG College , Jaipur 302004 , India
Abstract
Abstract
Polyurethane composites synthesized by interaction of fly ash filler with polyether polyol, cross-linking agent, and curing agent in a certain ratio. The study’s findings show that the mechanical properties of polyurethane composite are lowered by the hydroxyl moieties of surface-functionalized fly ash that are chemically or physically linked. The study also reveals that prior subjecting the samples of surface-functionalized fly ash–reinforced polyurethane composite material for destructive analysis by UTM for evaluating mechanical properties. The in-depth study of the IR spectroscopy data of the composites is done focusing onto the stretching frequency of carbonyl group of carbamate links the trend in mechanical behavior of the samples, the number of fly ash–carbamate links, and proximity of HS–SS (hard segment–soft segment) of fly ash–reinforced polyurethane composites can be foretold. By a detailed analysis of the patterns of carbonyl stretching frequencies of carbamate links, one can gain insight into the microphasic level of the separation and proximity of hard and soft segments in composites, which govern their mechanical properties. The relationships between carbamate carbonyl stretching frequencies and mechanical characteristics of composites have been found to be inversely correlated. In order to offset the excess hydroxyl group contribution due to OH-loaded fly ash, as indicated by the isocyanate (NCO) peak intensity (2,240–2,280 cm−1) in the composite’s infrared spectra, the studies were conducted at a higher index ratio (1.64).