Numerical Probabilistic Load Flow Analysis in Modern Power Systems with Intermittent Energy Sources

Author:

Mišurović FilipORCID,Mujović Saša

Abstract

Renewable resources integration through distributed generation (DG) affects conventional consideration of power system performance and confronts deterministic load flow (DLF) analysis with serious challenges. The DLF gives a snapshot of the system state neglecting all of the uncertainties arising from intermittent DG driven by variable weather conditions or volatile consumption. Therefore, with the aim of finer tracking and presentation of system variables, a probabilistic load flow (PLF) approach should be adopted. First, this article gives a literature overview of different PLF techniques. It focuses on numerical techniques examining them for simple random and Latin Hypercube sampling, vastly applied in previous works, and proposes a method combining Monte Carlo simulations with Halton quasi-random numbers. Stochastic modelling is performed for solar and wind power output. For method comparison and confirmation of the applicability of suggested PLF method with Halton sequences, different IEEE test cases were used, all modified by attaching DGs. More profound method assessment is conducted through discussing different renewables penetration levels and processing time. The overall simulation outcomes have shown that results of Halton method are of similar precision as the generally used Latin Hypercube method and therefore indicated the relevance of the proposed method and its potential for application in contemporary system analysis.

Funder

European Union Horizon 2020

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3