Unsafe Mining Behavior Identification Method Based on an Improved ST-GCN

Author:

Cao Xiangang,Zhang ChiyuORCID,Wang PengORCID,Wei HengyangORCID,Huang Shikai,Li Hu

Abstract

Aiming to solve the problems of large environmental interference and complex types of personnel behavior that are difficult to identify in the current identification of unsafe behavior in mining areas, an improved spatial temporal graph convolutional network (ST-GCN) for miners’ unsafe behavior identification network in a transportation roadway (NP-AGCN) was proposed. First, the skeleton spatial-temporal map constructed using multi-frame human key points was used for behavior recognition to reduce the interference caused by the complex environment of the coal mine. Second, aiming to solve the problem that the original graph structure cannot learn the association relationship between the non-naturally connected nodes, which leads to the low recognition rate of climbing belts, fighting and other behaviors, the graph structure was reconstructed and the original partitioning strategy was changed to improve the recognition ability of the model for multi-joint interaction behaviors. Finally, in order to alleviate the problem that the graph convolution network has difficulty learning global information due to the small receptive field, multiple self-attention mechanisms were introduced into the graph convolution to improve the recognition ability of the model for unsafe behaviors. In order to verify the detection ability of the model regarding identifying unsafe behaviors of personnel in a coal mine belt area, our model was tested on the public datasets NTU-RGB + D and the self-built datasets of unsafe behaviors in a coal mine belt area. The recognition accuracies of the proposed model in the above datasets were 94.7% and 94.1%, respectively, which were 6.4% and 7.4% higher than the original model, which verified that the proposed model had excellent recognition accuracies.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3