Affiliation:
1. School of Mining Engineering, University of Science and Technology Liaoning, Anshan 114051, China
Abstract
The unsafe action of miners is one of the main causes of mine accidents. Research on underground miner unsafe action recognition based on computer vision enables relatively accurate real-time recognition of unsafe action among underground miners. A dataset called unsafe actions of underground miners (UAUM) was constructed and included ten categories of such actions. Underground images were enhanced using spatial- and frequency-domain enhancement algorithms. A combination of the YOLOX object detection algorithm and the Lite-HRNet human key-point detection algorithm was utilized to obtain skeleton modal data. The CBAM-PoseC3D model, a skeleton modal action-recognition model incorporating the CBAM attention module, was proposed and combined with the RGB modal feature-extraction model CBAM-SlowOnly. Ultimately, this formed the Convolutional Block Attention Module–Multimodal Feature-Fusion Action Recognition (CBAM-MFFAR) model for recognizing unsafe actions of underground miners. The improved CBAM-MFFAR model achieved a recognition accuracy of 95.8% on the NTU60 RGB+D public dataset under the X-Sub benchmark. Compared to the CBAM-PoseC3D, PoseC3D, 2S-AGCN, and ST-GCN models, the recognition accuracy was improved by 2%, 2.7%, 7.3%, and 14.3%, respectively. On the UAUM dataset, the CBAM-MFFAR model achieved a recognition accuracy of 94.6%, with improvements of 2.6%, 4%, 12%, and 17.3% compared to the CBAM-PoseC3D, PoseC3D, 2S-AGCN, and ST-GCN models, respectively. In field validation at mining sites, the CBAM-MFFAR model accurately recognized similar and multiple unsafe actions among underground miners.
Funder
National Natural Science Foundation of China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献