Fully Printed Zinc Oxide Electrolyte-Gated Transistors on Paper

Author:

Carvalho José,Dubceac ViorelORCID,Grey Paul,Cunha Inês,Fortunato Elvira,Martins Rodrigo,Clausner Andre,Zschech Ehrenfried,Pereira Luís

Abstract

Fully printed and flexible inorganic electrolyte gated transistors (EGTs) on paper with a channel layer based on an interconnected zinc oxide (ZnO) nanoparticle matrix are reported in this work. The required rheological properties and good layer formation after printing are obtained using an eco-friendly binder such as ethyl cellulose (EC) to disperse the ZnO nanoparticles. Fully printed devices on glass substrates using a composite solid polymer electrolyte as gate dielectric exhibit saturation mobility above 5 cm2 V−1 s−1 after annealing at 350 °C. Proper optimization of the nanoparticle content in the ink allows for the formation of a ZnO channel layer at a maximum annealing temperature of 150 °C, compatible with paper substrates. These devices show low operation voltages, with a subthreshold slope of 0.21 V dec−1, a turn on voltage of 1.90 V, a saturation mobility of 0.07 cm2 V−1 s−1 and an Ion/Ioff ratio of more than three orders of magnitude.

Funder

European Research Council

Horizon 2020 Framework Programme

Fundação para a Ciência e a Tecnologia

Programa Operacional Temático Factores de Competitividade

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Solution-Processed Low Resistivity Zinc Oxide Nanoparticle Film with Enhanced Stability Using EVOH;ACS Applied Electronic Materials;2024-05-30

2. Electrolyte-gated FET Biosensors;Field-effect Transistor Biosensors for Rapid Pathogen Detection;2024-05-03

3. Liquid–Solid Interface Engineering of Ultrathin and Solution-Processed Indium Oxide-Based Electrolyte-Gated Transistors by Gallium Doping;ACS Applied Electronic Materials;2024-02-01

4. Electric-double-layer-gated 2D transistors for bioinspired sensors and neuromorphic devices;International Journal of Smart and Nano Materials;2024-01-02

5. Printing flexible thin-film transistors;Applied Physics Reviews;2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3