Effects of Paradigm Color and Screen Brightness on Visual Fatigue in Light Environment of Night Based on Eye Tracker and EEG Acquisition Equipment

Author:

Tian PeiyuanORCID,Xu Guanghua,Han Chengcheng,Zheng XiaoweiORCID,Zhang Kai,Du Chenghang,Wei Fan,Zhang Sicong

Abstract

Nowadays, more people tend to go to bed late and spend their sleep time with various electronic devices. At the same time, the BCI (brain–computer interface) rehabilitation equipment uses a visual display, thus it is necessary to evaluate the problem of visual fatigue to avoid the impact on the training effect. Therefore, it is very important to understand the impact of using electronic devices in a dark environment at night on human visual fatigue. This paper uses Matlab to write different color paradigm stimulations, uses a 4K display with an adjustable screen brightness to jointly design the experiment, uses eye tracker and g.tec Electroencephalogram (EEG) equipment to collect the signal, and then carries out data processing and analysis, finally obtaining the influence of the combination of different colors and different screen brightness on human visual fatigue in a dark environment. In this study, subjects were asked to evaluate their subjective (Likert scale) perception, and objective signals (pupil diameter, θ + α frequency band data) were collected in a dark environment (<3 lx). The Likert scale showed that a low screen brightness in the dark environment could reduce the visual fatigue of the subjects, and participants preferred blue to red. The pupil data revealed that visual perception sensitivity was more vulnerable to stimulation at a medium and high screen brightness, which is easier to deepen visual fatigue. EEG frequency band data concluded that there was no significant difference between paradigm colors and screen brightness on visual fatigue. On this basis, this paper puts forward a new index—the visual anti-fatigue index, which provides a valuable reference for the optimization of the indoor living environment, the improvement of satisfaction with the use of electronic equipment and BCI rehabilitation equipment, and the protection of human eyes.

Funder

the Key Projects in Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference69 articles.

1. A review of rechargeable batteries for portable electronic devices

2. Computer users at risk: Health disorders associated with prolonged computer use;Ellahi;J. Bus. Econ. Manag.,2011

3. Visual fatigue caused by viewing stereoscopic motion images: Background, theories, and observations

4. Generation M2: Media in the Lives of 8-to 18-Year-Olds;Rideout,2010

5. Computer vision syndrome: a review of ocular causes and potential treatments

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3