A quantization algorithm of visual fatigue based on underdamped second order stochastic resonance for steady state visual evoked potentials

Author:

Tian Peiyuan,Xu Guanghua,Han Chengcheng,Zhang Xun,Zheng Xiaowei,Wei Fan,Zhang Sicong,Zhao Zhe

Abstract

IntroductionIn recent years, more and more attention has been paid to the visual fatigue caused by steady state visual evoked potential (SSVEP) paradigm. It is well known that the large-scale application of brain-computer interface is closely related to SSVEP, and the fatigue caused by SSVEP paradigm leads to the reduction of application effect. At present, the mainstream method of objectively quantifying visual fatigue in SSVEP paradigm is based on traditional canonical correlation analysis (CCA).MethodsIn this paper, we propose a new SSVEP paradigm visual fatigue quantification algorithm based on underdamped second-order stochastic resonance (USSR) to accurately quantify visual fatigue caused by SSVEP paradigm in different working modes using single-channel electroencephalogram (EEG) signals. This scheme uses the fixed-step energy parameter optimization algorithm we designed, combined with the USSR model, to significantly improve the signal-to-noise ratio of the processed signal at the target characteristic frequency. We not only compared the new algorithm with CCA, but also with the traditional subjective quantitative visual fatigue gold standard Likert fatigue scale.ResultsThere was no significant difference (p = 0.090) between the quantitative value of paradigm fatigue obtained by the single channel SSVEP processed by the new algorithm and the gold standard of subjective fatigue quantification, while there was a significant difference (p < 0.001***) between the quantitative value of paradigm fatigue obtained by the traditional multi-channel CCA algorithm and the gold standard of subjective fatigue quantification.DiscussionThe conclusion shows that the quantization value obtained by the new algorithm can better match the subjective gold standard score, which also shows that the new algorithm is more reliable, which reflects the superiority of the new algorithm.

Publisher

Frontiers Media SA

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3