Fibrinogen Glycation and Presence of Glucose Impair Fibrin Polymerization—An In Vitro Study of Isolated Fibrinogen and Plasma from Patients with Diabetes Mellitus

Author:

Luzak BoguslawaORCID,Boncler MagdalenaORCID,Kosmalski Marcin,Mnich Ewelina,Stanczyk Lidia,Przygodzki TomaszORCID,Watala Cezary

Abstract

Background: Fibrin formation and structure may be affected by a plethora of factors, including both genetic and posttranslational modifications, such as glycation, nitration or acetylation. Methods: The present study examines the effect of fibrinogen glycation on fibrin polymerization, measured in fibrinogen concentration-standardized plasma of subjects with type 2 diabetes mellitus (T2DM) and in a solution of human fibrinogen exposed to 30 mM glucose for four days. Results: The fibrin polymerization velocity (Vmax) observed in the T2DM plasma (median 0.0056; IQR 0.0049‒0.0061 AU/s) was significantly lower than in non-diabetic plasma (median 0.0063; IQR 0.0058‒0.0071 AU/s) (p < 0.05). Furthermore, significantly lower Vmax was observed for glucose-treated fibrinogen (Vmax 0.046; IQR 0.022‒0.085 AU/s) compared to control protein incubated with a pure vehicle (Vmax 0.053; IQR 0.034‒0.097 AU/s) (p < 0.05). The same tendency was observed in the fibrinogen samples supplemented with 6 mM glucose just before measurements. It is assumed that glucose may affect the ability of fibrinogen to form a stable clot in T2DM subjects, and that this impairment is likely to influence the outcomes of some diagnostic assays. As the example, the impaired clotting ability of glycated fibrinogen may considerably influence the results of the standard Clauss method, routinely used to determine fibrinogen concentration in plasma. The stoichiometric analysis demonstrated that spontaneous glycation at both the sites with high and low glycation potential clearly dominated in T2DM individuals in all fibrinogen chains.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3