Effect of Olive Pit Reinforcement in Polylactic Acid Biocomposites on Environmental Degradation

Author:

Jurado-Contreras Sofía1ORCID,Navas-Martos Francisco J.1ORCID,Rodríguez-Liébana José A.1ORCID,La Rubia M. Dolores23ORCID

Affiliation:

1. Andaltec Technological Centre, Ampliación Polígono Industrial Cañada de la Fuente, C/Vilches 34, 23600 Martos, Spain

2. Department of Chemical, Environmental and Materials Engineering, Campus Las Lagunillas, University of Jaén, 23071 Jaén, Spain

3. University Institute of Research on Olive and Olive Oils (INUO), Campus Las Lagunillas, University of Jaén, 23071 Jaén, Spain

Abstract

Polylactic acid (PLA) is a biomaterial widely used as an alternative to petroleum-based polymeric matrices in plastic components. PLA-based biocomposites reinforced with lignocellulosic waste are currently receiving special attention owing to their mechanical properties, low toxicity, recyclability, and biodegradability. The influence of the percentage of waste on their properties and resistance to degradation are some of the points of great relevance. Therefore, a series of PLA-based biocomposites containing different percentages of olive pits (5, 15, 25 and 40% wt.) were manufactured and characterized both (a) immediately after manufacture and (b) after one year of storage under environmental conditions. The results obtained were analyzed to evaluate the influence of the incorporation of olive pits on the resistance to degradation (measured through Carbonyl Indices, CI), mechanical properties (tensile, flexural and impact strength), structure (Fourier Transform Infrared Spectroscopy, FT-IR; and, X-ray Diffraction, XRD), morphology (Scanning Electron Microscopy, SEM) and water absorption capacity of the manufactured materials. PLA degradation, corroborated by Differential Scanning Calorimetry (DSC), FT-IR, and XRD, resulted in a decrease in tensile and flexural strengths and an increase in the tensile and flexural moduli. This trend was maintained for the biocomposites, confirming that reinforcement promoted the PLA degradation.

Funder

Provincial Council of Jaén

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3