Deep Learning-Based Detection of Learning Disorders on a Large Scale Dataset of Eye Movement Records

Author:

El Hmimdi Alae Eddine12,Kapoula Zoï123,Sainte Fare Garnot Vivien1

Affiliation:

1. Orasis-Eye Analytics & Rehabilitation Research Group, Spinoff CNRS, 12 Rue Lacretelle, 75015 Paris, France

2. LIPADE, French University Institute (IUF), Laboratoire d’Informatique Paris Descartes, University of Paris, 45 Rue des Saints-Pères, 75006 Paris, France

3. IRIS Lab, Neurophysiology of Binocular Motor Control and Vision, CNRS UAR 2022, University of Paris, 45 Rue des Saints Pères, 75006 Paris, France

Abstract

Early detection of dyslexia and learning disorders is vital for avoiding a learning disability, as well as supporting dyslexic students by tailoring academic programs to their needs. Several studies have investigated using supervised algorithms to screen dyslexia vs. control subjects; however, the data size and the conditions of data acquisition were their most significant limitation. In the current study, we leverage a large dataset, containing 4243 time series of eye movement records from children across Europe. These datasets were derived from various tests such as saccade, vergence, and reading tasks. Furthermore, our methods were evaluated with realistic test data, including real-life biases such as noise, eye tracking misalignment, and similar pathologies among non-scholar difficulty classes. In addition, we present a novel convolutional neural network architecture, adapted to our time series classification problem, that is intended to generalize on a small annotated dataset and to handle a high-resolution signal (1024 point). Our architecture achieved a precision of 80.20% and a recall of 75.1%, when trained on the vergence dataset, and a precision of 77.2% and a recall of 77.5% when trained on the saccade dataset. Finally, we performed a comparison using our ML approach, a second architecture developed for a similar problem, and two other methods that we investigated that use deep learning algorithms to predict dyslexia.

Funder

Orasis-Ear

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3