Predicting Dyslexia and Reading Speed in Adolescents from Eye Movements in Reading and Non-Reading Tasks: A Machine Learning Approach

Author:

El Hmimdi Alae Eddine,Ward Lindsey MORCID,Palpanas Themis,Kapoula Zoï

Abstract

There is evidence that abnormalities in eye movements exist during reading in dyslexic individuals. A few recent studies applied Machine Learning (ML) classifiers to such eye movement data to predict dyslexia. A general problem with these studies is that eye movement data sets are limited to reading saccades and fixations that are confounded by reading difficulty, e.g., it is unclear whether abnormalities are the consequence or the cause of reading difficulty. Recently, Ward and Kapoula used LED targets (with the REMOBI & AIDEAL method) to demonstrate abnormalities of large saccades and vergence eye movements in depth demonstrating intrinsic eye movement problems independent from reading in dyslexia. In another study, binocular eye movements were studied while reading two texts: one using the “Alouette” text, which has no meaning and requires word decoding, the other using a meaningful text. It was found the Alouette text exacerbates eye movement abnormalities in dyslexics. In this paper, we more precisely quantify the quality of such eye movement descriptors for dyslexia detection. We use the descriptors produced in the four different setups as input to multiple classifiers and compare their generalization performances. Our results demonstrate that eye movement data from the Alouette test predicts dyslexia with an accuracy of 81.25%; similarly, we were able to predict dyslexia with an accuracy of 81.25% when using data from saccades to LED targets on the Remobi device and 77.3% when using vergence movements to LED targets. Noticeably, eye movement data from the meaningful text produced the lowest accuracy (70.2%). In a subsequent analysis, ML algorithms were applied to predict reading speed based on eye movement descriptors extracted from the meaningful reading, then from Remobi saccade and vergence tests. Remobi vergence eye movement descriptors can predict reading speed even better than eye movement descriptors from the meaningful reading test.

Publisher

MDPI AG

Subject

General Neuroscience

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3