Pediatric and Adolescent Seizure Detection: A Machine Learning Approach Exploring the Influence of Age and Sex in Electroencephalogram Analysis

Author:

Wei Lan1ORCID,Mooney Catherine1ORCID

Affiliation:

1. FutureNeuro SFI Research Centre, School of Computer Science, University College Dublin, D02 YN77 Dublin, Ireland

Abstract

Background: Epilepsy, a prevalent neurological disorder characterized by recurrent seizures affecting an estimated 70 million people worldwide, poses a significant diagnostic challenge. EEG serves as an important tool in identifying these seizures, but the manual examination of EEGs by experts is time-consuming. To expedite this process, automated seizure detection methods have emerged as powerful aids for expert EEG analysis. It is worth noting that while such methods are well-established for adult EEGs, they have been underdeveloped for pediatric and adolescent EEGs. This study sought to address this gap by devising an automatic seizure detection system tailored for pediatric and adolescent EEG data. Methods: Leveraging publicly available datasets, the TUH pediatric and adolescent EEG and CHB-MIT EEG datasets, the machine learning-based models were constructed. The TUH pediatric and adolescent EEG dataset was divided into training (n = 118), validation (n = 19), and testing (n = 37) subsets, with special attention to ensure a clear demarcation between the individuals in the training and test sets to preserve the test set’s independence. The CHB-MIT EEG dataset was used as an external test set. Age and sex were incorporated as features in the models to investigate their potential influence on seizure detection. Results: By leveraging 20 features extracted from both time and frequency domains, along with age as an additional feature, the method achieved an accuracy of 98.95% on the TUH test set and 64.82% on the CHB-MIT external test set. Our investigation revealed that age is a crucial factor for accurate seizure detection in pediatric and adolescent EEGs. Conclusion: The outcomes of this study hold substantial promise in supporting researchers and clinicians engaged in the automated analysis of seizures in pediatric and adolescent EEGs.

Funder

European Union’s Horizon 2020 Research and Innovation Programme

Science Foundation Ireland

European Regional Development Fund

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3