Hierarchical Sub-Pixel Anomaly Detection Framework for Hyperspectral Imagery

Author:

Wang Wenzheng,Zhao Baojun,Feng Fan,Nan Jinghong,Li Cheng

Abstract

Anomaly detection is an important task in hyperspectral processing. Some previous works, based on statistical information, focus on Reed-Xiaoli (RX), as it is one of the most classical and commonly used methods. However, its performance tends to be affected when anomaly target size is smaller than spatial resolution. Those sub-pixel anomaly target spectra are usually much similar with background spectra, and may results in false alarm for traditional RX method. To address this issue, this paper proposes a hierarchical RX (H-RX) anomaly detection framework to enhance the performance. The proposed H-RX method consists of several different layers of original RX anomaly detector. In each layer, the RX’s output of each pixel is restrained by a nonlinear function and then imposed as a coefficient on its spectrum for the next iteration. Furthermore, we design a spatial regularization layer to enhance the sub-pixel anomaly detection performance. To better illustrate the hierarchical framework, we provide a theoretical explanation of the hierarchical background spectra restraint and regularization process. Extensive experiments on three hyperspectral images illustrate that the proposed anomaly detection algorithm outperforms the original RX algorithm and some other classical methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3