A Hyperspectral Anomaly Detection Algorithm Based on Morphological Profile and Attribute Filter with Band Selection and Automatic Determination of Maximum Area

Author:

Andika Ferdi,Rizkinia Mia,Okuda Masahiro

Abstract

Anomaly detection is one of the most challenging topics in hyperspectral imaging due to the high spectral resolution of the images and the lack of spatial and spectral information about the anomaly. In this paper, a novel hyperspectral anomaly detection method called morphological profile and attribute filter (MPAF) algorithm is proposed. Aiming to increase the detection accuracy and reduce computing time, it consists of three steps. First, select a band containing rich information for anomaly detection using a novel band selection algorithm based on entropy and histogram counts. Second, remove the background of the selected band with morphological profile. Third, filter the false anomalous pixels with attribute filter. A novel algorithm is also proposed in this paper to define the maximum area of anomalous objects. Experiments were run on real hyperspectral datasets to evaluate the performance, and analysis was also conducted to verify the contribution of each step of MPAF. The results show that the performance of MPAF yields competitive results in terms of average area under the curve (AUC) for receiver operating characteristic (ROC), precision-recall, and computing time, i.e., 0.9916, 0.7055, and 0.25 s, respectively. Compared with four other anomaly detection algorithms, MPAF yielded the highest average AUC for ROC and precision-recall in eight out of thirteen and nine out of thirteen datasets, respectively. Further analysis also proved that each step of MPAF has its effectiveness in the detection performance.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3