Attention-Based Residual Network with Scattering Transform Features for Hyperspectral Unmixing with Limited Training Samples

Author:

Zeng ,Ritz ,Zhao ,Lan

Abstract

This paper proposes a framework for unmixing of hyperspectral data that is based on utilizing the scattering transform to extract deep features that are then used within a neural network. Previous research has shown that using the scattering transform combined with a traditional K-nearest neighbors classifier (STFHU) is able to achieve more accurate unmixing results compared to a convolutional neural network (CNN) applied directly to the hyperspectral images. This paper further explores hyperspectral unmixing in limited training data scenarios, which are likely to occur in practical applications where the access to large amounts of labeled training data is not possible. Here, it is proposed to combine the scattering transform with the attention-based residual neural network (ResNet). Experimental results on three HSI datasets demonstrate that this approach provides at least 40% higher unmixing accuracy compared to the previous STFHU and CNN algorithms when using limited training data, ranging from 5% to 30%, are available. The use of the scattering transform for deriving features within the ResNet unmixing system also leads more than 25% improvement when unmixing hyperspectral data contaminated by additive noise.

Funder

National Natural Science Foundation of China

China Scholarship Council

Advance Research Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physics-informed interactive network for hyperspectral image classification;Infrared Physics & Technology;2024-09

2. Hyperspectral Unmixing With Multi-Scale Convolution Attention Network;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

3. An Abundance-Guided Attention Network for Hyperspectral Unmixing;IEEE Transactions on Geoscience and Remote Sensing;2024

4. Spatial Validation of Spectral Unmixing Results: A Systematic Review;Remote Sensing;2023-05-29

5. Hematological and Biochemical Parameters at Admission as Predictors for Mortality in Patients with Moderate to Severe COVID-19;Ethiopian Journal of Health Sciences;2023-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3