Abstract
This paper proposes a framework for unmixing of hyperspectral data that is based on utilizing the scattering transform to extract deep features that are then used within a neural network. Previous research has shown that using the scattering transform combined with a traditional K-nearest neighbors classifier (STFHU) is able to achieve more accurate unmixing results compared to a convolutional neural network (CNN) applied directly to the hyperspectral images. This paper further explores hyperspectral unmixing in limited training data scenarios, which are likely to occur in practical applications where the access to large amounts of labeled training data is not possible. Here, it is proposed to combine the scattering transform with the attention-based residual neural network (ResNet). Experimental results on three HSI datasets demonstrate that this approach provides at least 40% higher unmixing accuracy compared to the previous STFHU and CNN algorithms when using limited training data, ranging from 5% to 30%, are available. The use of the scattering transform for deriving features within the ResNet unmixing system also leads more than 25% improvement when unmixing hyperspectral data contaminated by additive noise.
Funder
National Natural Science Foundation of China
China Scholarship Council
Advance Research Program
Fundamental Research Funds for the Central Universities
Subject
General Earth and Planetary Sciences
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献