Abstract
Recently, neural network-based deep learning techniques have been actively applied to detect underwater objects in sonar (sound navigation and ranging) images. However, unlike optical images, acquiring sonar images is extremely time- and cost-intensive, and therefore securing sonar data and conducting related research can be rather challenging. Here, a side-scan sonar was used to obtain sonar images to detect underwater objects off the coast of the Korean Peninsula. For the detection experiments, we used an underwater mock-up model with a similar size, shape, material, and acoustic characteristics to the target object that we wished to detect. We acquired various side-scan sonar images of the mock-up object against the background of mud, sand, and rock to account for the different characteristics of the coastal and seafloor environments of the Korean Peninsula. To construct a detection network suitable for the obtained sonar images from the experiment, the performance of five types of feature extraction networks and two types of optimizers was analyzed. From the analysis results, it was confirmed that performance was achieved when DarkNet-19 was used as the feature extraction network, and ADAM was applied as the optimizer. However, it is possible that there are feature extraction network and optimizer that are more suitable for our sonar images. Therefore, further research is needed. In addition, it is expected that the performance of the modified detection network can be more improved if additional images are obtained.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Reference36 articles.
1. The Nature of Sonar in Principles of Underwater Sound;Urick,1983
2. Automated Survey in Very Shallow Water using an Unmanned Surface Vehicle
3. Autonomous Survey and Identification Planning for MCM Operations;Krogstad;Proceedings of the Undersea Defense Technology,2014
4. Object Detection in 20 Years: A survey;Zou;arXiv,2019
5. Identification of Underwater Objects using Sonar Image;Kang;J. Inst. Elect. Inf. Eng.,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献