Circulation and Transport Processes during an Extreme Freshwater Discharge Event at the Tagus Estuary

Author:

Ribeiro Ana Filipa,Sousa MagdaORCID,Picado AnaORCID,Ribeiro Américo Soares,Dias João MiguelORCID,Vaz NunoORCID

Abstract

During the winter of 2013, the Tagus estuary was under the influence of intense winds and extreme freshwater discharge that changed its hydrodynamics and, consequently, the salt and heat transport. Moreover, the dynamics of the estuary may change due to climate change which will increase the frequency of heat waves and increase the mean sea level. Therefore, it is of utmost importance to study the impact of the future increase in air temperature and mean sea level under extreme events, such as that in the winter of 2013, to ascertain the foreseen changes in water properties transport within the estuary and near coastal zone. Several scenarios were developed and explored, using the Delft3D model suite, considering the results of the CMIP6 report as forcing conditions. Before the event, the mixing region of the estuary presented well-mixed conditions and its marine area a slight stratification. During the event, the estuary was filled with freshwater and the mixing region migrated toward the coast, leading to lower water temperature values inside the estuary. SLR has a higher impact on the salinity and stratification patterns than the air temperature increase. The response of water temperature is directly related to the increase in air temperature. The estuary mouth and the shallow regions will be more prone to changes than the upstream region of the estuary. The projected changes are directly linked to the future CO2 emissions scenarios, being intensive with the highest emission scenario.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3